\[ \left (y(x)-x^2\right ) y'(x)+4 x y(x)=0 \] ✓ Mathematica : cpu = 0.140635 (sec), leaf count = 257
DSolve[4*x*y[x] + (-x^2 + y[x])*Derivative[1][y][x] == 0,y[x],x]
\[\left \{\left \{y(x)\to x^2+\frac {1}{-\frac {1}{2 x^2}-\frac {\frac {1}{2}-\frac {i}{2}}{\sqrt {2} x^2 \sqrt {x^2 \cosh \left (\frac {2 c_1}{9}\right )+x^2 \sinh \left (\frac {2 c_1}{9}\right )-i}}}\right \},\left \{y(x)\to x^2+\frac {1}{-\frac {1}{2 x^2}+\frac {\frac {1}{2}-\frac {i}{2}}{\sqrt {2} x^2 \sqrt {x^2 \cosh \left (\frac {2 c_1}{9}\right )+x^2 \sinh \left (\frac {2 c_1}{9}\right )-i}}}\right \},\left \{y(x)\to x^2+\frac {1}{-\frac {1}{2 x^2}-\frac {\frac {1}{2}+\frac {i}{2}}{\sqrt {2} x^2 \sqrt {x^2 \cosh \left (\frac {2 c_1}{9}\right )+x^2 \sinh \left (\frac {2 c_1}{9}\right )+i}}}\right \},\left \{y(x)\to x^2+\frac {1}{-\frac {1}{2 x^2}+\frac {\frac {1}{2}+\frac {i}{2}}{\sqrt {2} x^2 \sqrt {x^2 \cosh \left (\frac {2 c_1}{9}\right )+x^2 \sinh \left (\frac {2 c_1}{9}\right )+i}}}\right \}\right \}\] ✓ Maple : cpu = 0.162 (sec), leaf count = 57
dsolve((y(x)-x^2)*diff(y(x),x)+4*x*y(x) = 0,y(x))
\[y \left (x \right ) = -\frac {c_{1} \sqrt {-4 x^{2}+c_{1}^{2}}}{2}+\frac {c_{1}^{2}}{2}-x^{2}\]