\[ x \left (x^4+x y(x)-1\right ) y'(x)-y(x) \left (-x^4+x y(x)-1\right )=0 \] ✓ Mathematica : cpu = 0.391728 (sec), leaf count = 39
DSolve[-(y[x]*(-1 - x^4 + x*y[x])) + x*(-1 + x^4 + x*y[x])*Derivative[1][y][x] == 0,y[x],x]
\[\text {Solve}\left [2 x^2+\frac {y(x)}{x}+\frac {x \left (-2 \log \left (\frac {1}{1-x y(x)}\right )-2+c_1\right )}{y(x)}=0,y(x)\right ]\] ✓ Maple : cpu = 0.122 (sec), leaf count = 98
dsolve(x*(x*y(x)+x^4-1)*diff(y(x),x)-y(x)*(x*y(x)-x^4-1) = 0,y(x))
\[y \left (x \right ) = \frac {\left (-c_{1}+{\mathrm e}^{\RootOf \left (-2 \textit {\_Z} \,x^{4} {\mathrm e}^{2 \textit {\_Z}}+2 x^{4} {\mathrm e}^{2 \textit {\_Z}}-2 \,{\mathrm e}^{\textit {\_Z}} c_{1} x^{4}+{\mathrm e}^{2 \textit {\_Z}}-2 \,{\mathrm e}^{\textit {\_Z}} c_{1}+c_{1}^{2}\right )}\right ) {\mathrm e}^{-\RootOf \left (-2 \textit {\_Z} \,x^{4} {\mathrm e}^{2 \textit {\_Z}}+2 x^{4} {\mathrm e}^{2 \textit {\_Z}}-2 \,{\mathrm e}^{\textit {\_Z}} c_{1} x^{4}+{\mathrm e}^{2 \textit {\_Z}}-2 \,{\mathrm e}^{\textit {\_Z}} c_{1}+c_{1}^{2}\right )}}{x}\]