ODE No. 263

\[ 2 x^3+3 x^2 y(x)^2+y(x) y'(x)+7=0 \] Mathematica : cpu = 0.0993097 (sec), leaf count = 181

DSolve[7 + 2*x^3 + 3*x^2*y[x]^2 + y[x]*Derivative[1][y][x] == 0,y[x],x]
 

\[\left \{\left \{y(x)\to -\sqrt {\frac {7\ 2^{2/3} e^{-2 x^3} x \Gamma \left (\frac {1}{3},-2 x^3\right )}{3 \sqrt [3]{-x^3}}-\frac {2^{2/3} e^{-2 x^3} x \Gamma \left (\frac {4}{3},-2 x^3\right )}{3 \sqrt [3]{-x^3}}+c_1 e^{-2 x^3}}\right \},\left \{y(x)\to \sqrt {\frac {7\ 2^{2/3} e^{-2 x^3} x \Gamma \left (\frac {1}{3},-2 x^3\right )}{3 \sqrt [3]{-x^3}}-\frac {2^{2/3} e^{-2 x^3} x \Gamma \left (\frac {4}{3},-2 x^3\right )}{3 \sqrt [3]{-x^3}}+c_1 e^{-2 x^3}}\right \}\right \}\] Maple : cpu = 0.148 (sec), leaf count = 173

dsolve(2*x^3+y(x)*diff(y(x),x)+3*x^2*y(x)^2+7 = 0,y(x))
 

\[y \left (x \right ) = -\frac {2^{\frac {2}{3}} \sqrt {-240 \Gamma \left (\frac {2}{3}\right ) \left (-x^{3}\right )^{\frac {1}{3}} \left (\frac {9 \Gamma \left (\frac {2}{3}\right ) 2^{\frac {1}{3}} \left (-\frac {3 \,{\mathrm e}^{-2 x^{3}} c_{1}}{2}+x \right ) \left (-x^{3}\right )^{\frac {1}{3}}}{40}+{\mathrm e}^{-2 x^{3}} x \left (\pi \sqrt {3}-\frac {3 \Gamma \left (\frac {1}{3}, -2 x^{3}\right ) \Gamma \left (\frac {2}{3}\right )}{2}\right )\right ) 2^{\frac {1}{3}}}}{18 \left (-x^{3}\right )^{\frac {1}{3}} \Gamma \left (\frac {2}{3}\right )}\]