ODE No. 274

\[ \left (a+x^2+y(x)^2\right ) y'(x)+b+x^2+2 x y(x)=0 \] Mathematica : cpu = 0.174577 (sec), leaf count = 411

DSolve[b + x^2 + 2*x*y[x] + (a + x^2 + y[x]^2)*Derivative[1][y][x] == 0,y[x],x]
 

\[\left \{\left \{y(x)\to \frac {\sqrt [3]{\sqrt {2916 \left (a+x^2\right )^3+\left (-81 b x-27 x^3+81 c_1\right ){}^2}-81 b x-27 x^3+81 c_1}}{3 \sqrt [3]{2}}-\frac {3 \sqrt [3]{2} \left (a+x^2\right )}{\sqrt [3]{\sqrt {2916 \left (a+x^2\right )^3+\left (-81 b x-27 x^3+81 c_1\right ){}^2}-81 b x-27 x^3+81 c_1}}\right \},\left \{y(x)\to \frac {3 \left (1+i \sqrt {3}\right ) \left (a+x^2\right )}{2^{2/3} \sqrt [3]{\sqrt {2916 \left (a+x^2\right )^3+\left (-81 b x-27 x^3+81 c_1\right ){}^2}-81 b x-27 x^3+81 c_1}}-\frac {\left (1-i \sqrt {3}\right ) \sqrt [3]{\sqrt {2916 \left (a+x^2\right )^3+\left (-81 b x-27 x^3+81 c_1\right ){}^2}-81 b x-27 x^3+81 c_1}}{6 \sqrt [3]{2}}\right \},\left \{y(x)\to \frac {3 \left (1-i \sqrt {3}\right ) \left (a+x^2\right )}{2^{2/3} \sqrt [3]{\sqrt {2916 \left (a+x^2\right )^3+\left (-81 b x-27 x^3+81 c_1\right ){}^2}-81 b x-27 x^3+81 c_1}}-\frac {\left (1+i \sqrt {3}\right ) \sqrt [3]{\sqrt {2916 \left (a+x^2\right )^3+\left (-81 b x-27 x^3+81 c_1\right ){}^2}-81 b x-27 x^3+81 c_1}}{6 \sqrt [3]{2}}\right \}\right \}\] Maple : cpu = 0.039 (sec), leaf count = 657

dsolve((y(x)^2+x^2+a)*diff(y(x),x)+2*x*y(x)+x^2+b = 0,y(x))
 

\[y \left (x \right ) = \frac {\left (-4 x^{3}-12 b x -12 c_{1}+4 \sqrt {5 x^{6}+\left (12 a +6 b \right ) x^{4}+6 x^{3} c_{1}+\left (12 a^{2}+9 b^{2}\right ) x^{2}+18 b x c_{1}+4 a^{3}+9 c_{1}^{2}}\right )^{\frac {2}{3}}-4 x^{2}-4 a}{2 \left (-4 x^{3}-12 b x -12 c_{1}+4 \sqrt {5 x^{6}+\left (12 a +6 b \right ) x^{4}+6 x^{3} c_{1}+\left (12 a^{2}+9 b^{2}\right ) x^{2}+18 b x c_{1}+4 a^{3}+9 c_{1}^{2}}\right )^{\frac {1}{3}}}\]