ODE No. 296

\[ x^4+x \left (x^2 y(x)+x^2+y(x)^2\right ) y'(x)-2 x^2 y(x)^2-2 y(x)^3=0 \] Mathematica : cpu = 0.447394 (sec), leaf count = 102

DSolve[x^4 - 2*x^2*y[x]^2 - 2*y[x]^3 + x*(x^2 + x^2*y[x] + y[x]^2)*Derivative[1][y][x] == 0,y[x],x]
 

\[\left \{\left \{y(x)\to -e^{-c_1} x^2-e^{-c_1} \sqrt {x^4-e^{c_1} x^4+e^{2 c_1} x^2}\right \},\left \{y(x)\to e^{-c_1} \sqrt {x^4-e^{c_1} x^4+e^{2 c_1} x^2}-e^{-c_1} x^2\right \}\right \}\] Maple : cpu = 0.592 (sec), leaf count = 135

dsolve(x*(y(x)^2+x^2*y(x)+x^2)*diff(y(x),x)-2*y(x)^3-2*x^2*y(x)^2+x^4 = 0,y(x))
 

\[y \left (x \right ) = -\frac {\left (x^{3}-c_{1} x -x^{2}+\sqrt {-c_{1} x^{4}+x^{4}+x^{2} c_{1}^{2}}\right ) x}{-c_{1} x +x^{2}+\sqrt {-c_{1} x^{4}+x^{4}+x^{2} c_{1}^{2}}}\]