ODE No. 331

\[ y'(x) \left (\sum _{\nu =1}^p y(x)^{\nu } f(\nu )(x)\right )-\sum _{\nu =1}^q y(x)^{\nu } g(\nu )(x)=0 \] Mathematica : cpu = 53.2164 (sec), leaf count = 0

DSolve[-Sum[y[x]^nu*g[nu][x], {nu, 1, q}] + Sum[y[x]^nu*f[nu][x], {nu, 1, p}]*Derivative[1][y][x] == 0,y[x],x]
 

, could not solve

DSolve[-Sum[y[x]^nu*g[nu][x], {nu, 1, q}] + Sum[y[x]^nu*f[nu][x], {nu, 1, p}]*Derivative[1][y][x] == 0, y[x], x]

Maple : cpu = 0.232 (sec), leaf count = 78

dsolve(diff(y(x),x)*f[nu](x)*(-y(x)+y(x)^(p+1))/(-1+y(x))-g[nu](x)*(-y(x)+y(x)^(q+1))/(-1+y(x)) = 0,y(x))
 

\[\frac {y \left (x \right )^{p +1} \Phi \left (-y \left (x \right )^{q} \left (-1\right )^{\mathrm {csgn}\left (i y \left (x \right )^{q}\right )}, 1, \frac {p +1}{q}\right )-y \left (x \right ) \Phi \left (-y \left (x \right )^{q} \left (-1\right )^{\mathrm {csgn}\left (i y \left (x \right )^{q}\right )}, 1, \frac {1}{q}\right )+q \left (\int \frac {g_{\nu }\left (x \right )}{f_{\nu }\left (x \right )}d x +c_{1}\right )}{q} = 0\]