ODE No. 333

\[ -x^{3/2} y(x)^{5/2}+\left (2 x^{5/2} y(x)^{3/2}+x^2 y(x)-x\right ) y'(x)+x y(x)^2-y(x)=0 \] Mathematica : cpu = 0.4241 (sec), leaf count = 72

DSolve[-y[x] + x*y[x]^2 - x^(3/2)*y[x]^(5/2) + (-x + x^2*y[x] + 2*x^(5/2)*y[x]^(3/2))*Derivative[1][y][x] == 0,y[x],x]
 

\[\text {Solve}\left [\frac {2 \sqrt {x y(x)} \log (y(x))}{\sqrt {x} \sqrt {y(x)}}-\frac {\sqrt {x y(x)} \left (3 x^{3/2} y(x)^{3/2} \log (x)+6 x y(x)-2\right )}{3 x^2 y(x)^2}=c_1,y(x)\right ]\] Maple : cpu = 0.097 (sec), leaf count = 32

dsolve((2*x^(5/2)*y(x)^(3/2)+x^2*y(x)-x)*diff(y(x),x)-x^(3/2)*y(x)^(5/2)+x*y(x)^2-y(x) = 0,y(x))
 

\[\ln \left (y \left (x \right )\right )+\frac {1}{3 x^{\frac {3}{2}} y \left (x \right )^{\frac {3}{2}}}-\frac {1}{\sqrt {x}\, \sqrt {y \left (x \right )}}-\frac {\ln \left (x \right )}{2}-c_{1} = 0\]