\[ x \left (2 e^{-x y(x)}+3 e^{x y(x)}\right ) \left (x y'(x)+y(x)\right )+1=0 \] ✓ Mathematica : cpu = 0.544607 (sec), leaf count = 163
DSolve[1 + (2/E^(x*y[x]) + 3*E^(x*y[x]))*x*(y[x] + x*Derivative[1][y][x]) == 0,y[x],x]
\[\left \{\left \{y(x)\to -\frac {\cosh ^{-1}\left (\frac {1}{24} \left (-5 \sqrt {24+\log ^2\left (\frac {c_1}{x}\right )}-\log \left (\frac {c_1}{x}\right )\right )\right )}{x}\right \},\left \{y(x)\to \frac {\cosh ^{-1}\left (\frac {1}{24} \left (-5 \sqrt {24+\log ^2\left (\frac {c_1}{x}\right )}-\log \left (\frac {c_1}{x}\right )\right )\right )}{x}\right \},\left \{y(x)\to -\frac {\cosh ^{-1}\left (\frac {1}{24} \left (5 \sqrt {24+\log ^2\left (\frac {c_1}{x}\right )}-\log \left (\frac {c_1}{x}\right )\right )\right )}{x}\right \},\left \{y(x)\to \frac {\cosh ^{-1}\left (\frac {1}{24} \left (5 \sqrt {24+\log ^2\left (\frac {c_1}{x}\right )}-\log \left (\frac {c_1}{x}\right )\right )\right )}{x}\right \}\right \}\] ✓ Maple : cpu = 0.048 (sec), leaf count = 17
dsolve(x*(3*exp(x*y(x))+2*exp(-x*y(x)))*(x*diff(y(x),x)+y(x))+1 = 0,y(x))
\[y \left (x \right ) = \frac {\ln \left (-\frac {\ln \left (x \right )}{5}+\frac {c_{1}}{5}\right )}{x}\]