\[ x y'(x) \left (2 x^2 y(x) \log (y(x))+1\right )-2 y(x)=0 \] ✓ Mathematica : cpu = 0.204343 (sec), leaf count = 35
DSolve[-2*y[x] + x*(1 + 2*x^2*Log[y[x]]*y[x])*Derivative[1][y][x] == 0,y[x],x]
\[\text {Solve}\left [\frac {y(x)}{x^2}+2 \left (\frac {1}{2} y(x)^2 \log (y(x))-\frac {y(x)^2}{4}\right )=c_1,y(x)\right ]\] ✓ Maple : cpu = 0.098 (sec), leaf count = 36
dsolve(x*(2*x^2*y(x)*ln(y(x))+1)*diff(y(x),x)-2*y(x) = 0,y(x))
\[y \left (x \right ) = {\mathrm e}^{\RootOf \left (2 \textit {\_Z} \,x^{2} {\mathrm e}^{2 \textit {\_Z}}-x^{2} {\mathrm e}^{2 \textit {\_Z}}+2 x^{2} c_{1}+2 \,{\mathrm e}^{\textit {\_Z}}\right )}\]