ODE No. 351

\[ y'(x) \cos (y(x))-\sin ^3(y(x))+x \sin (y(x)) \cos ^2(y(x))=0 \] Mathematica : cpu = 0.489369 (sec), leaf count = 61

DSolve[x*Cos[y[x]]^2*Sin[y[x]] - Sin[y[x]]^3 + Cos[y[x]]*Derivative[1][y][x] == 0,y[x],x]
 

\[\left \{\left \{y(x)\to -\cot ^{-1}\left (\sqrt {e^{x^2} \left (-\sqrt {\pi } \text {erf}(x)+4 c_1\right )}\right )\right \},\left \{y(x)\to \cot ^{-1}\left (\sqrt {e^{x^2} \left (-\sqrt {\pi } \text {erf}(x)+4 c_1\right )}\right )\right \}\right \}\] Maple : cpu = 0.534 (sec), leaf count = 55

dsolve(diff(y(x),x)*cos(y(x))+x*sin(y(x))*cos(y(x))^2-sin(y(x))^3 = 0,y(x))
 

\[y \left (x \right ) = \arcsin \left (\frac {1}{\sqrt {1-\sqrt {\pi }\, \erf \left (x \right ) {\mathrm e}^{x^{2}}-2 c_{1} {\mathrm e}^{x^{2}}}}\right )\]