ODE No. 362

\[ y'(x) \left (x^2 y(x) \sin (x y(x))-4 x\right )-y(x)+x y(x)^2 \sin (x y(x))=0 \] Mathematica : cpu = 0.353993 (sec), leaf count = 23

DSolve[-y[x] + x*Sin[x*y[x]]*y[x]^2 + (-4*x + x^2*Sin[x*y[x]]*y[x])*Derivative[1][y][x] == 0,y[x],x]
 

\[\text {Solve}[-4 \log (y(x))-\cos (x y(x))-\log (x)=c_1,y(x)]\] Maple : cpu = 0.232 (sec), leaf count = 23

dsolve((x^2*y(x)*sin(x*y(x))-4*x)*diff(y(x),x)+x*y(x)^2*sin(x*y(x))-y(x) = 0,y(x))
 

\[y \left (x \right ) = \frac {\RootOf \left (-\textit {\_Z} +{\mathrm e}^{-\frac {\cos \left (\textit {\_Z} \right )}{4}} c_{1} x^{\frac {3}{4}}\right )}{x}\]