ODE No. 367

\[ f\left (x^c y(x)\right ) \left (b x y'(x)-a\right )-x^a y(x)^b \left (c y(x)+x y'(x)\right )=0 \] Mathematica : cpu = 10.2605 (sec), leaf count = 0

DSolve[-(x^a*y[x]^b*(c*y[x] + x*Derivative[1][y][x])) + f[x^c*y[x]]*(-a + b*x*Derivative[1][y][x]) == 0,y[x],x]
 

, could not solve

DSolve[-(x^a*y[x]^b*(c*y[x] + x*Derivative[1][y][x])) + f[x^c*y[x]]*(-a + b*x*Derivative[1][y][x]) == 0, y[x], x]

Maple : cpu = 0. (sec), leaf count = 0

dsolve(f(x^c*y(x))*(b*x*diff(y(x),x)-a)-x^a*y(x)^b*(x*diff(y(x),x)+c*y(x)) = 0,y(x))
 

, could not solve

dsolve(f(x^c*y(x))*(b*x*diff(y(x),x)-a)-x^a*y(x)^b*(x*diff(y(x),x)+c*y(x)) = 0,y(x))