ODE No. 388

\[ y'(x)^2-2 y(x) y'(x)-2 x=0 \] Mathematica : cpu = 0.627399 (sec), leaf count = 61

DSolve[-2*x - 2*y[x]*Derivative[1][y][x] + Derivative[1][y][x]^2 == 0,y[x],x]
 

\[\text {Solve}\left [\left \{x=\frac {K[1] \sinh ^{-1}(K[1])}{2 \sqrt {K[1]^2+1}}+\frac {c_1 K[1]}{\sqrt {K[1]^2+1}},y(x)=\frac {K[1]}{2}-\frac {x}{K[1]}\right \},\{y(x),K[1]\}\right ]\] Maple : cpu = 0.082 (sec), leaf count = 223

dsolve(diff(y(x),x)^2-2*y(x)*diff(y(x),x)-2*x = 0,y(x))
 

\[\frac {\left (\frac {y \left (x \right )}{2}-\frac {\sqrt {y \left (x \right )^{2}+2 x}}{2}\right ) \arcsinh \left (-y \left (x \right )+\sqrt {y \left (x \right )^{2}+2 x}\right )+x \sqrt {2 y \left (x \right )^{2}+2 x -2 y \left (x \right ) \sqrt {y \left (x \right )^{2}+2 x}+1}-2 c_{1} y \left (x \right )+2 c_{1} \sqrt {y \left (x \right )^{2}+2 x}}{\sqrt {2 y \left (x \right )^{2}+2 x -2 y \left (x \right ) \sqrt {y \left (x \right )^{2}+2 x}+1}} = 0\]