ODE No. 409

\[ x y'(x)^2-2 y'(x)-y(x)=0 \] Mathematica : cpu = 1.98956 (sec), leaf count = 50

DSolve[-y[x] - 2*Derivative[1][y][x] + x*Derivative[1][y][x]^2 == 0,y[x],x]
 

\[\text {Solve}\left [\left \{x=\frac {2 K[1]-2 \log (K[1])}{(K[1]-1)^2}+\frac {c_1}{(K[1]-1)^2},y(x)=x K[1]^2-2 K[1]\right \},\{y(x),K[1]\}\right ]\] Maple : cpu = 0.166 (sec), leaf count = 63

dsolve(x*diff(y(x),x)^2-2*diff(y(x),x)-y(x) = 0,y(x))
 

\[y \left (x \right ) = x \,{\mathrm e}^{2 \RootOf \left (-x \,{\mathrm e}^{2 \textit {\_Z}}+2 x \,{\mathrm e}^{\textit {\_Z}}+2 \,{\mathrm e}^{\textit {\_Z}}+c_{1}-2 \textit {\_Z} -x \right )}-2 \,{\mathrm e}^{\RootOf \left (-x \,{\mathrm e}^{2 \textit {\_Z}}+2 x \,{\mathrm e}^{\textit {\_Z}}+2 \,{\mathrm e}^{\textit {\_Z}}+c_{1}-2 \textit {\_Z} -x \right )}\]