\[ x^3+x y'(x)^2+y(x) y'(x)=0 \] ✓ Mathematica : cpu = 0.129043 (sec), leaf count = 107
DSolve[x^3 + y[x]*Derivative[1][y][x] + x*Derivative[1][y][x]^2 == 0,y[x],x]
\[\left \{\left \{y(x)\to x^2 \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {1}{5 K[2]+\sqrt {K[2]^2-4}}dK[2]\& \right ]\left [\int _1^x-\frac {1}{2 K[3]}dK[3]+c_1\right ]\right \},\left \{y(x)\to x^2 \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {1}{\sqrt {K[4]^2-4}-5 K[4]}dK[4]\& \right ]\left [\int _1^x\frac {1}{2 K[5]}dK[5]+c_1\right ]\right \}\right \}\] ✓ Maple : cpu = 0.177 (sec), leaf count = 269
dsolve(x*diff(y(x),x)^2+y(x)*diff(y(x),x)+x^3 = 0,y(x))
\[\int _{\textit {\_b}}^{x}\frac {-y \left (x \right )+\sqrt {-4 \textit {\_a}^{4}+y \left (x \right )^{2}}}{\textit {\_a} \left (5 y \left (x \right )-\sqrt {-4 \textit {\_a}^{4}+y \left (x \right )^{2}}\right )}d \textit {\_a} +\int _{}^{y \left (x \right )}\frac {-2+\left (-80 \textit {\_f} +16 \sqrt {-4 x^{4}+\textit {\_f}^{2}}\right ) \left (\int _{\textit {\_b}}^{x}\frac {\textit {\_a}^{3}}{\left (-5 \textit {\_f} +\sqrt {-4 \textit {\_a}^{4}+\textit {\_f}^{2}}\right )^{2} \sqrt {-4 \textit {\_a}^{4}+\textit {\_f}^{2}}}d \textit {\_a} \right )}{5 \textit {\_f} -\sqrt {-4 x^{4}+\textit {\_f}^{2}}}d \textit {\_f} +c_{1} = 0\]