ODE No. 444

\[ x^2 y'(x)^2-(y(x)-2 x) y(x) y'(x)+y(x)^2=0 \] Mathematica : cpu = 0.382983 (sec), leaf count = 75

DSolve[y[x]^2 - y[x]*(-2*x + y[x])*Derivative[1][y][x] + x^2*Derivative[1][y][x]^2 == 0,y[x],x]
 

\[\left \{\left \{y(x)\to -\frac {\cosh (2 c_1)-\sinh (2 c_1)}{x \cosh (2 c_1)+x \sinh (2 c_1)-1}\right \},\left \{y(x)\to -\frac {\cosh (2 c_1)-\sinh (2 c_1)}{x \cosh (2 c_1)+x \sinh (2 c_1)+1}\right \}\right \}\] Maple : cpu = 1.155 (sec), leaf count = 120

dsolve(x^2*diff(y(x),x)^2-y(x)*(y(x)-2*x)*diff(y(x),x)+y(x)^2 = 0,y(x))
 

\[y \left (x \right ) = 4 x\]