\[ (y(x)+x) y'(x)^2+2 x y'(x)-y(x)=0 \] ✓ Mathematica : cpu = 0.51932 (sec), leaf count = 269
DSolve[-y[x] + 2*x*Derivative[1][y][x] + (x + y[x])*Derivative[1][y][x]^2 == 0,y[x],x]
\[\left \{\left \{y(x)\to -\frac {2 \sqrt {-\sqrt {3} x \cosh (c_1)-\sqrt {3} x \sinh (c_1)+\cosh (2 c_1)+\sinh (2 c_1)}}{\sqrt {3}}-\frac {\cosh (c_1)}{\sqrt {3}}-\frac {\sinh (c_1)}{\sqrt {3}}\right \},\left \{y(x)\to \frac {2 \sqrt {-\sqrt {3} x \cosh (c_1)-\sqrt {3} x \sinh (c_1)+\cosh (2 c_1)+\sinh (2 c_1)}}{\sqrt {3}}-\frac {\cosh (c_1)}{\sqrt {3}}-\frac {\sinh (c_1)}{\sqrt {3}}\right \},\left \{y(x)\to -\frac {2 \sqrt {\sqrt {3} x \cosh (c_1)+\sqrt {3} x \sinh (c_1)+\cosh (2 c_1)+\sinh (2 c_1)}}{\sqrt {3}}+\frac {\cosh (c_1)}{\sqrt {3}}+\frac {\sinh (c_1)}{\sqrt {3}}\right \},\left \{y(x)\to \frac {2 \sqrt {\sqrt {3} x \cosh (c_1)+\sqrt {3} x \sinh (c_1)+\cosh (2 c_1)+\sinh (2 c_1)}}{\sqrt {3}}+\frac {\cosh (c_1)}{\sqrt {3}}+\frac {\sinh (c_1)}{\sqrt {3}}\right \}\right \}\] ✓ Maple : cpu = 0.57 (sec), leaf count = 121
dsolve((y(x)+x)*diff(y(x),x)^2+2*x*diff(y(x),x)-y(x) = 0,y(x))
\[y \left (x \right ) = -\frac {\left (1+i \sqrt {3}\right ) x}{2}\]