\[ (3 y(x)-2) y'(x)^2+4 y(x)-4=0 \] ✓ Mathematica : cpu = 0.11678 (sec), leaf count = 155
DSolve[-4 + 4*y[x] + (-2 + 3*y[x])*Derivative[1][y][x]^2 == 0,y[x],x]
\[\left \{\left \{y(x)\to \text {InverseFunction}\left [-\sqrt {3 (\text {$\#$1}-1)+1} \sqrt {1-\text {$\#$1}}-\frac {\sqrt {1-\text {$\#$1}} \sinh ^{-1}\left (\sqrt {3} \sqrt {\text {$\#$1}-1}\right )}{\sqrt {3} \sqrt {\text {$\#$1}-1}}\& \right ][-2 x+c_1]\right \},\left \{y(x)\to \text {InverseFunction}\left [-\sqrt {3 (\text {$\#$1}-1)+1} \sqrt {1-\text {$\#$1}}-\frac {\sqrt {1-\text {$\#$1}} \sinh ^{-1}\left (\sqrt {3} \sqrt {\text {$\#$1}-1}\right )}{\sqrt {3} \sqrt {\text {$\#$1}-1}}\& \right ][2 x+c_1]\right \}\right \}\] ✓ Maple : cpu = 0.447 (sec), leaf count = 99
dsolve((3*y(x)-2)*diff(y(x),x)^2-4+4*y(x) = 0,y(x))
\[y \left (x \right ) = 1\]