ODE No. 505

\[ -x^3+x y(x)^2 y'(x)^2-2 y(x)^3 y'(x)+2 x y(x)^2=0 \] Mathematica : cpu = 0.0985869 (sec), leaf count = 73

DSolve[-x^3 + 2*x*y[x]^2 - 2*y[x]^3*Derivative[1][y][x] + x*y[x]^2*Derivative[1][y][x]^2 == 0,y[x],x]
 

\[\left \{\left \{y(x)\to -\sqrt {x^2+2 c_1}\right \},\left \{y(x)\to \sqrt {x^2+2 c_1}\right \},\left \{y(x)\to -\sqrt {x^2+c_1 x^4}\right \},\left \{y(x)\to \sqrt {x^2+c_1 x^4}\right \}\right \}\] Maple : cpu = 0.037 (sec), leaf count = 52

dsolve(x*y(x)^2*diff(y(x),x)^2-2*y(x)^3*diff(y(x),x)+2*x*y(x)^2-x^3=0,y(x))
 

\[y \left (x \right ) = \sqrt {x^{2}+c_{1}}\]