ODE No. 569

\[ \left (y'(x)^2+1\right ) \sin ^2\left (y(x)-x y'(x)\right )-1=0 \] Mathematica : cpu = 0.100249 (sec), leaf count = 59

DSolve[-1 + Sin[y[x] - x*Derivative[1][y][x]]^2*(1 + Derivative[1][y][x]^2) == 0,y[x],x]
 

\[\left \{\left \{y(x)\to c_1 x-\frac {1}{2} \cos ^{-1}\left (\frac {-1+c_1{}^2}{1+c_1{}^2}\right )\right \},\left \{y(x)\to c_1 x+\frac {1}{2} \cos ^{-1}\left (\frac {-1+c_1{}^2}{1+c_1{}^2}\right )\right \}\right \}\] Maple : cpu = 0.39 (sec), leaf count = 147

dsolve((diff(y(x),x)^2+1)*sin(x*diff(y(x),x)-y(x))^2-1=0,y(x))
 

\[y \left (x \right ) = -x \sqrt {1-x}\, \sqrt {\frac {1}{x}}-\arcsin \left (\sqrt {\frac {1}{x}}\, x \right )\]