\[ y'(x)=-\frac {y(x)^2 \left (2 x-F\left (\frac {1-\frac {1}{2} x y(x)}{y(x)}\right )\right )}{4 x} \] ✓ Mathematica : cpu = 0.463128 (sec), leaf count = 145
DSolve[Derivative[1][y][x] == -1/4*((2*x - F[(1 - (x*y[x])/2)/y[x]])*y[x]^2)/x,y[x],x]
\[\text {Solve}\left [\int _1^{y(x)}\left (-\int _1^x\frac {2 \left (-\frac {K[1]}{2 K[2]}-\frac {1-\frac {1}{2} K[1] K[2]}{K[2]^2}\right ) F'\left (\frac {1-\frac {1}{2} K[1] K[2]}{K[2]}\right )}{F\left (\frac {1-\frac {1}{2} K[1] K[2]}{K[2]}\right )^2}dK[1]-\frac {4}{F\left (\frac {1-\frac {1}{2} x K[2]}{K[2]}\right ) K[2]^2}\right )dK[2]+\int _1^x\left (\frac {1}{K[1]}-\frac {2}{F\left (\frac {1-\frac {1}{2} K[1] y(x)}{y(x)}\right )}\right )dK[1]=c_1,y(x)\right ]\] ✓ Maple : cpu = 0.138 (sec), leaf count = 29
dsolve(diff(y(x),x) = -1/4*y(x)^2*(2*x-F(-1/2*(x*y(x)-2)/y(x)))/x,y(x))
\[y \left (x \right ) = \frac {2}{2 \RootOf \left (-\ln \left (x \right )-4 \left (\int _{}^{\textit {\_Z}}\frac {1}{F \left (\textit {\_a} \right )}d \textit {\_a} \right )+c_{1}\right )+x}\]