ODE No. 615

\[ y'(x)=\frac {y(x)}{x (y(x) F(x y(x))-1)} \] Mathematica : cpu = 0.266676 (sec), leaf count = 77

DSolve[Derivative[1][y][x] == y[x]/(x*(-1 + F[x*y[x]]*y[x])),y[x],x]
 

\[\text {Solve}\left [\int _1^{y(x)}\left (-\int _1^x\frac {F'(K[1] K[2])}{F(K[1] K[2])^2}dK[1]-\frac {1}{F(x K[2]) K[2]}+1\right )dK[2]+\int _1^x-\frac {1}{F(K[1] y(x)) K[1]}dK[1]=c_1,y(x)\right ]\] Maple : cpu = 0.142 (sec), leaf count = 26

dsolve(diff(y(x),x) = y(x)/x/(-1+F(x*y(x))*y(x)),y(x))
 

\[-y \left (x \right )+\int _{}^{x y \left (x \right )}\frac {1}{F \left (\textit {\_a} \right ) \textit {\_a}}d \textit {\_a} -c_{1} = 0\]