\[ y'(x)=\frac {(2 y(x) \log (x)-1)^2}{x} \] ✓ Mathematica : cpu = 0.855755 (sec), leaf count = 47
DSolve[Derivative[1][y][x] == (-1 + 2*Log[x]*y[x])^2/x,y[x],x]
\[\left \{\left \{y(x)\to \frac {1}{\sqrt {2} \left (\sqrt {2} \log (x)-\tan \left (\frac {1}{2} \left (2 \sqrt {2} \log (x)+\sqrt {2} c_1\right )\right )\right )}\right \}\right \}\] ✓ Maple : cpu = 0.225 (sec), leaf count = 62
dsolve(diff(y(x),x) = (2*y(x)*ln(x)-1)^2/x,y(x))
\[y \left (x \right ) = \frac {\sin \left (\ln \left (x \right ) \sqrt {2}\right ) c_{1}-\cos \left (\ln \left (x \right ) \sqrt {2}\right )}{\sin \left (\ln \left (x \right ) \sqrt {2}\right ) \left (2 \ln \left (x \right ) c_{1}+\sqrt {2}\right )+\left (\sqrt {2}\, c_{1}-2 \ln \left (x \right )\right ) \cos \left (\ln \left (x \right ) \sqrt {2}\right )}\]