ODE No. 645

\[ y'(x)=y(x) (x-\log (y(x))) \] Mathematica : cpu = 0.0884454 (sec), leaf count = 20

DSolve[Derivative[1][y][x] == (x - Log[y[x]])*y[x],y[x],x]
 

\[\left \{\left \{y(x)\to e^{x-e^{-x+c_1}-1}\right \}\right \}\] Maple : cpu = 0.157 (sec), leaf count = 14

dsolve(diff(y(x),x) = (-ln(y(x))+x)*y(x),y(x))
 

\[y \left (x \right ) = {\mathrm e}^{{\mathrm e}^{-x} c_{1}-1+x}\]