ODE No. 671

\[ y'(x)=\frac {\left (x y(x)^2+1\right )^2}{x^4 y(x)} \] Mathematica : cpu = 0.325607 (sec), leaf count = 192

DSolve[Derivative[1][y][x] == (1 + x*y[x]^2)^2/(x^4*y[x]),y[x],x]
 

\[\left \{\left \{y(x)\to -\frac {\sqrt {-\frac {2}{x}+\sqrt {2} e^{\frac {2 \sqrt {2} (1+c_1 x)}{x}}-\frac {2 e^{\frac {2 \sqrt {2} (1+c_1 x)}{x}}}{x}-\sqrt {2}}}{\sqrt {2+2 e^{\frac {2 \sqrt {2} (1+c_1 x)}{x}}}}\right \},\left \{y(x)\to \frac {\sqrt {-\frac {2}{x}+\sqrt {2} e^{\frac {2 \sqrt {2} (1+c_1 x)}{x}}-\frac {2 e^{\frac {2 \sqrt {2} (1+c_1 x)}{x}}}{x}-\sqrt {2}}}{\sqrt {2+2 e^{\frac {2 \sqrt {2} (1+c_1 x)}{x}}}}\right \}\right \}\] Maple : cpu = 0.236 (sec), leaf count = 237

dsolve(diff(y(x),x) = (x*y(x)^2+1)^2/y(x)/x^4,y(x))
 

\[y \left (x \right ) = -\frac {\sqrt {2}\, \sqrt {-x \left (c_{1} {\mathrm e}^{\frac {-1-\sqrt {2}\, x}{x^{2}}}+{\mathrm e}^{\frac {-1+\sqrt {2}\, x}{x^{2}}}\right ) \left (c_{1} \left (\sqrt {2}\, x +2\right ) {\mathrm e}^{\frac {-1-\sqrt {2}\, x}{x^{2}}}+\left (2-\sqrt {2}\, x \right ) {\mathrm e}^{\frac {-1+\sqrt {2}\, x}{x^{2}}}\right )}}{2 x \left (c_{1} {\mathrm e}^{\frac {-1-\sqrt {2}\, x}{x^{2}}}+{\mathrm e}^{\frac {-1+\sqrt {2}\, x}{x^{2}}}\right )}\]