ODE No. 681

\[ y'(x)=\frac {a x^2 y(x)^2+a x y(x)^2+a x y(x)^2 \log \left (\frac {1}{x}\right )+b x^4+b x^3+b x^3 \log \left (\frac {1}{x}\right )+y(x)}{x} \] Mathematica : cpu = 0.207604 (sec), leaf count = 84

DSolve[Derivative[1][y][x] == (b*x^3 + b*x^4 + b*x^3*Log[x^(-1)] + y[x] + a*x*y[x]^2 + a*x^2*y[x]^2 + a*x*Log[x^(-1)]*y[x]^2)/x,y[x],x]
 

\[\left \{\left \{y(x)\to \frac {\sqrt {b} x \tan \left (\frac {1}{12} \left (4 \sqrt {a} \sqrt {b} x^3+9 \sqrt {a} \sqrt {b} x^2-6 \sqrt {a} \sqrt {b} x^2 \log (x)+12 \sqrt {a} \sqrt {b} c_1\right )\right )}{\sqrt {a}}\right \}\right \}\] Maple : cpu = 0.079 (sec), leaf count = 45

dsolve(diff(y(x),x) = (y(x)+x^3*b*ln(1/x)+x^4*b+b*x^3+x*a*y(x)^2*ln(1/x)+a*x^2*y(x)^2+a*x*y(x)^2)/x,y(x))
 

\[y \left (x \right ) = \frac {\tan \left (\frac {\sqrt {a b}\, \left (4 x^{3}+6 x^{2} \ln \left (\frac {1}{x}\right )+9 x^{2}+12 c_{1}\right )}{12}\right ) x \sqrt {a b}}{a}\]