\[ y'(x)=\frac {x^4+x^3+x^2 y(x)^2+x y(x)^2+y(x) \log (x-1)}{x \log (x-1)} \] ✓ Mathematica : cpu = 0.224744 (sec), leaf count = 34
DSolve[Derivative[1][y][x] == (x^3 + x^4 + Log[-1 + x]*y[x] + x*y[x]^2 + x^2*y[x]^2)/(x*Log[-1 + x]),y[x],x]
\[\{\{y(x)\to x \tan (2 \text {Ei}(\log (x-1))+3 \text {Ei}(2 \log (x-1))+\text {Ei}(3 \log (x-1))+c_1)\}\}\] ✓ Maple : cpu = 0.067 (sec), leaf count = 39
dsolve(diff(y(x),x) = (y(x)*ln(x-1)+x^4+x^3+x^2*y(x)^2+x*y(x)^2)/ln(x-1)/x,y(x))
\[y \left (x \right ) = \tan \left (-\Ei \left (1, -3 \ln \left (x -1\right )\right )-3 \Ei \left (1, -2 \ln \left (x -1\right )\right )-2 \Ei \left (1, -\ln \left (x -1\right )\right )+c_{1}\right ) x\]