ODE No. 7

\[ y'(x)+y(x) \cos (x)-e^{-\sin (x)}=0 \] Mathematica : cpu = 0.0881956 (sec), leaf count = 23

DSolve[-E^(-Sin[x]) + Cos[x]*y[x] + Derivative[1][y][x] == 0,y[x],x]
 

\[\left \{\left \{y(x)\to x e^{-\sin (x)}+c_1 e^{-\sin (x)}\right \}\right \}\] Maple : cpu = 0.008 (sec), leaf count = 13

dsolve(diff(y(x),x)+y(x)*cos(x)-exp(-sin(x)) = 0,y(x))
 

\[y \left (x \right ) = \left (x +c_{1}\right ) {\mathrm e}^{-\sin \left (x \right )}\]

Hand solution

\begin {equation} \frac {dy}{dx}+y\left ( x\right ) \cos \left ( x\right ) =e^{-\sin \left ( x\right ) }\tag {1} \end {equation}

Integrating factor \(\mu =e^{\int \cos dx}=e^{\sin x}\). Hence (1) becomes

\[ \frac {d}{dx}\left ( \mu y\left ( x\right ) \right ) =\mu e^{-\sin \left ( x\right ) }\]

Replacing \(\mu \) by \(e^{\sin x}\) and integrating both sides

\begin {align*} e^{\sin x}y\left ( x\right ) & =\int e^{\sin x}e^{-\sin \left ( x\right ) }dx+C\\ e^{\sin x}y\left ( x\right ) & =\int dx+C\\ e^{\sin x}y\left ( x\right ) & =x+C\\ y\left ( x\right ) & =xe^{-\sin x}+Ce^{-\sin \left ( x\right ) } \end {align*}