ODE No. 705

\[ y'(x)=\frac {y(x) \left (x^4+x^3+\log (y(x))+x\right )}{x} \] Mathematica : cpu = 0.147836 (sec), leaf count = 30

DSolve[Derivative[1][y][x] == ((x + x^3 + x^4 + Log[y[x]])*y[x])/x,y[x],x]
 

\[\left \{\left \{y(x)\to x^x e^{\frac {x^4}{3}+\frac {x^3}{2}+c_1 x}\right \}\right \}\] Maple : cpu = 0.211 (sec), leaf count = 24

dsolve(diff(y(x),x) = (ln(y(x))+x+x^3+x^4)*y(x)/x,y(x))
 

\[y \left (x \right ) = {\mathrm e}^{\frac {x^{4}}{3}} {\mathrm e}^{\frac {x^{3}}{2}} {\mathrm e}^{x c_{1}} x^{x}\]