ODE No. 714

\[ y'(x)=-\frac {y(x) \left (x^3 y(x)+x^2 y(x) \log (x)-x^2+e^x-x \log (x)-\log \left (\frac {1}{x}\right )\right )}{x \left (e^x-\log \left (\frac {1}{x}\right )\right )} \] Mathematica : cpu = 1.36151 (sec), leaf count = 162

DSolve[Derivative[1][y][x] == -((y[x]*(E^x - x^2 - Log[x^(-1)] - x*Log[x] + x^3*y[x] + x^2*Log[x]*y[x]))/(x*(E^x - Log[x^(-1)]))),y[x],x]
 

\[\left \{\left \{y(x)\to \frac {\exp \left (\int _1^x-\frac {-K[1]^2-\log (K[1]) K[1]+e^{K[1]}-\log \left (\frac {1}{K[1]}\right )}{K[1] \left (e^{K[1]}-\log \left (\frac {1}{K[1]}\right )\right )}dK[1]\right )}{-\int _1^x-\frac {\exp \left (\int _1^{K[2]}-\frac {-K[1]^2-\log (K[1]) K[1]+e^{K[1]}-\log \left (\frac {1}{K[1]}\right )}{K[1] \left (e^{K[1]}-\log \left (\frac {1}{K[1]}\right )\right )}dK[1]\right ) \left (K[2]^3+\log (K[2]) K[2]^2\right )}{K[2] \left (e^{K[2]}-\log \left (\frac {1}{K[2]}\right )\right )}dK[2]+c_1}\right \}\right \}\] Maple : cpu = 0.304 (sec), leaf count = 96

dsolve(diff(y(x),x) = -y(x)*(-ln(1/x)+exp(x)+y(x)*x^2*ln(x)+x^3*y(x)-x*ln(x)-x^2)/(-ln(1/x)+exp(x))/x,y(x))
 

\[y \left (x \right ) = \frac {{\mathrm e}^{\int \frac {x \ln \left (x \right )+x^{2}+\ln \left (\frac {1}{x}\right )-{\mathrm e}^{x}}{\left (-\ln \left (\frac {1}{x}\right )+{\mathrm e}^{x}\right ) x}d x}}{\int \frac {{\mathrm e}^{\int \frac {x \ln \left (x \right )+x^{2}+\ln \left (\frac {1}{x}\right )-{\mathrm e}^{x}}{\left (-\ln \left (\frac {1}{x}\right )+{\mathrm e}^{x}\right ) x}d x} x \left (x +\ln \left (x \right )\right )}{-\ln \left (\frac {1}{x}\right )+{\mathrm e}^{x}}d x +c_{1}}\]