ODE No. 724

\[ y'(x)=-\frac {y(x)^3}{x (-y(x)+y(x) \log (x)-1)} \] Mathematica : cpu = 15.4478 (sec), leaf count = 422

DSolve[Derivative[1][y][x] == -(y[x]^3/(x*(-1 - y[x] + Log[x]*y[x]))),y[x],x]
 

\[\text {Solve}\left [-\frac {\sqrt [3]{-2} \left (\frac {1-y(x) (\log (x)-4)}{\sqrt [3]{2} \sqrt [3]{-\frac {1}{(\log (x)-1)^3}} (\log (x)-1) (y(x) (\log (x)-1)-1)}+(-2)^{2/3}\right ) \left (\frac {2^{2/3} (y(x) (\log (x)-4)-1)}{\sqrt [3]{-\frac {1}{(\log (x)-1)^3}} (\log (x)-1) (y(x) (\log (x)-1)-1)}+(-2)^{2/3}\right ) \left (\log \left (\frac {2^{2/3} (1-y(x) (\log (x)-4))}{\sqrt [3]{-\frac {1}{(\log (x)-1)^3}} (\log (x)-1) (y(x) (\log (x)-1)-1)}+2 (-2)^{2/3}\right ) \left (\frac {\sqrt [3]{-1} (1-y(x) (\log (x)-4))}{\sqrt [3]{-\frac {1}{(\log (x)-1)^3}} (\log (x)-1) (y(x) (\log (x)-1)-1)}+1\right )-\log \left (\frac {2^{2/3} (y(x) (\log (x)-4)-1)}{\sqrt [3]{-\frac {1}{(\log (x)-1)^3}} (\log (x)-1) (y(x) (\log (x)-1)-1)}+(-2)^{2/3}\right ) \left (\frac {\sqrt [3]{-1} (1-y(x) (\log (x)-4))}{\sqrt [3]{-\frac {1}{(\log (x)-1)^3}} (\log (x)-1) (y(x) (\log (x)-1)-1)}+1\right )+3\right )}{9 \left (\frac {(y(x) (\log (x)-4)-1)^3}{(y(x) (\log (x)-1)-1)^3}+\frac {3 \sqrt [3]{-1} (y(x) (\log (x)-4)-1)}{\left (-\frac {1}{(\log (x)-1)^3}\right )^{4/3} (\log (x)-1)^4 (y(x) (\log (x)-1)-1)}+2\right )}=\frac {1}{9} 2^{2/3} \left (-\frac {1}{(\log (x)-1)^3}\right )^{2/3} \log (x) (\log (x)-1)^2+c_1,y(x)\right ]\] Maple : cpu = 0.068 (sec), leaf count = 18

dsolve(diff(y(x),x) = -y(x)^3/(-1+y(x)*ln(x)-y(x))/x,y(x))
 

\[y \left (x \right ) = \frac {1}{-\LambertW \left (c_{1} {\mathrm e}^{-2} x \right )+\ln \left (x \right )-2}\]