ODE No. 736

\[ y'(x)=\frac {x^4-2 x^2 y(x)+2 x^2+y(x)^2+2 x-1}{x+1} \] Mathematica : cpu = 0.208642 (sec), leaf count = 31

DSolve[Derivative[1][y][x] == (-1 + 2*x + 2*x^2 + x^4 - 2*x^2*y[x] + y[x]^2)/(1 + x),y[x],x]
 

\[\left \{\left \{y(x)\to x^2+\frac {(x+1)^2}{-\frac {x^2}{2}-x+c_1}+1\right \}\right \}\] Maple : cpu = 0.19 (sec), leaf count = 43

dsolve(diff(y(x),x) = (2*x^2+2*x+x^4-2*x^2*y(x)-1+y(x)^2)/(1+x),y(x))
 

\[y \left (x \right ) = \frac {c_{1} \left (x^{4}+2 x^{3}-x^{2}-2 x -2\right )+x^{2}+1}{1+\left (x^{2}+2 x \right ) c_{1}}\]