ODE No. 749

\[ y'(x)=\frac {x (x-y(x))^2 (y(x)+x)^2}{y(x)} \] Mathematica : cpu = 0.162253 (sec), leaf count = 126

DSolve[Derivative[1][y][x] == (x*(x - y[x])^2*(x + y[x])^2)/y[x],y[x],x]
 

\[\left \{\left \{y(x)\to -\frac {\sqrt {x^2+x^2 e^{2 x^2+4 c_1}-e^{2 x^2+4 c_1}+1}}{\sqrt {1+e^{2 x^2+4 c_1}}}\right \},\left \{y(x)\to \frac {\sqrt {x^2+x^2 e^{2 x^2+4 c_1}-e^{2 x^2+4 c_1}+1}}{\sqrt {1+e^{2 x^2+4 c_1}}}\right \}\right \}\] Maple : cpu = 0.149 (sec), leaf count = 192

dsolve(diff(y(x),x) = (x-y(x))^2*(y(x)+x)^2*x/y(x),y(x))
 

\[y \left (x \right ) = \frac {\sqrt {\left (\left (x^{2}+1\right ) {\mathrm e}^{-\frac {x^{2} \left (x^{2}+2\right )}{2}}+c_{1} \left (x^{2}-1\right ) {\mathrm e}^{-\frac {x^{2} \left (x^{2}-2\right )}{2}}\right ) \left (c_{1} {\mathrm e}^{-\frac {x^{2} \left (x^{2}-2\right )}{2}}+{\mathrm e}^{-\frac {x^{2} \left (x^{2}+2\right )}{2}}\right )}}{c_{1} {\mathrm e}^{-\frac {x^{2} \left (x^{2}-2\right )}{2}}+{\mathrm e}^{-\frac {x^{2} \left (x^{2}+2\right )}{2}}}\]