ODE No. 751

\[ y'(x)=\frac {y(x) \left (x^4+x \log (y(x))+\log (y(x))\right )}{x (x+1)} \] Mathematica : cpu = 0.175678 (sec), leaf count = 30

DSolve[Derivative[1][y][x] == ((x^4 + Log[y[x]] + x*Log[y[x]])*y[x])/(x*(1 + x)),y[x],x]
 

\[\left \{\left \{y(x)\to (x+1)^x e^{\frac {x^3}{2}-x^2+c_1 x}\right \}\right \}\] Maple : cpu = 0.208 (sec), leaf count = 26

dsolve(diff(y(x),x) = (ln(y(x))*x+ln(y(x))+x^4)*y(x)/x/(1+x),y(x))
 

\[y \left (x \right ) = {\mathrm e}^{\frac {x^{3}}{2}} \left (1+x \right )^{x} {\mathrm e}^{x c_{1}} {\mathrm e}^{-x^{2}}\]