ODE No. 753

\[ y'(x)=\frac {y(x) \log (y(x)) \left (x^4 \log (y(x))+x+1\right )}{x (x+1)} \] Mathematica : cpu = 0.172769 (sec), leaf count = 41

DSolve[Derivative[1][y][x] == (Log[y[x]]*(1 + x + x^4*Log[y[x]])*y[x])/(x*(1 + x)),y[x],x]
 

\[\left \{\left \{y(x)\to \exp \left (-\frac {12 x}{3 x^4-4 x^3+6 x^2-12 x+12 \log (x+1)-12 c_1}\right )\right \}\right \}\] Maple : cpu = 0.291 (sec), leaf count = 38

dsolve(diff(y(x),x) = (x+1+x^4*ln(y(x)))*y(x)*ln(y(x))/x/(1+x),y(x))
 

\[y \left (x \right ) = {\mathrm e}^{-\frac {12 x}{3 x^{4}-4 x^{3}+6 x^{2}+12 \ln \left (1+x \right )-12 c_{1}-12 x}}\]