\[ y'(x)=\frac {y(x) (x (-\log (y(x)))-\log (y(x))+x)}{x (x+1)} \] ✓ Mathematica : cpu = 0.166473 (sec), leaf count = 26
DSolve[Derivative[1][y][x] == ((x - Log[y[x]] - x*Log[y[x]])*y[x])/(x*(1 + x)),y[x],x]
\[\left \{\left \{y(x)\to (x+1)^{-1/x} e^{1-\frac {c_1}{x}}\right \}\right \}\] ✓ Maple : cpu = 0.21 (sec), leaf count = 22
dsolve(diff(y(x),x) = -(ln(y(x))*x+ln(y(x))-x)*y(x)/x/(1+x),y(x))
\[y \left (x \right ) = {\mathrm e} \left (1+x \right )^{-\frac {1}{x}} {\mathrm e}^{\frac {c_{1}}{x}}\]