ODE No. 778

\[ y'(x)=\frac {x^9 y(x)^3+x^6 y(x)^2-3 x^2 y(x)+1}{x^3} \] Mathematica : cpu = 0.160002 (sec), leaf count = 95

DSolve[Derivative[1][y][x] == (1 - 3*x^2*y[x] + x^6*y[x]^2 + x^9*y[x]^3)/x^3,y[x],x]
 

\[\text {Solve}\left [-\frac {29}{3} \text {RootSum}\left [-29 \text {$\#$1}^3+3 \sqrt [3]{29} \text {$\#$1}-29\& ,\frac {\log \left (\frac {3 x^6 y(x)+x^3}{\sqrt [3]{29} \sqrt [3]{x^9}}-\text {$\#$1}\right )}{\sqrt [3]{29}-29 \text {$\#$1}^2}\& \right ]=\frac {29^{2/3} \left (x^9\right )^{2/3}}{9 x^5}+c_1,y(x)\right ]\] Maple : cpu = 0.05 (sec), leaf count = 37

dsolve(diff(y(x),x) = (-3*x^2*y(x)+1+x^6*y(x)^2+y(x)^3*x^9)/x^3,y(x))
 

\[y \left (x \right ) = \frac {-3+29 \RootOf \left (-81 \left (\int _{}^{\textit {\_Z}}\frac {1}{841 \textit {\_a}^{3}-27 \textit {\_a} +27}d \textit {\_a} \right )+x +3 c_{1}\right )}{9 x^{3}}\]