ODE No. 797

\[ y'(x)=\frac {y(x) \left (x^3 y(x) \cosh \left (\frac {x+1}{x-1}\right )+x^2 y(x) \cosh \left (\frac {x+1}{x-1}\right )-x^2 \cosh \left (\frac {x+1}{x-1}\right )-x \cosh \left (\frac {x+1}{x-1}\right )-1\right )}{x} \] Mathematica : cpu = 1.82436 (sec), leaf count = 349

DSolve[Derivative[1][y][x] == (y[x]*(-1 - x*Cosh[(1 + x)/(-1 + x)] - x^2*Cosh[(1 + x)/(-1 + x)] + x^2*Cosh[(1 + x)/(-1 + x)]*y[x] + x^3*Cosh[(1 + x)/(-1 + x)]*y[x]))/x,y[x],x]
 

\[\left \{\left \{y(x)\to \frac {\exp \left (\frac {\left (3 e^2-1\right ) \text {Chi}\left (\frac {2}{x-1}\right )}{e}+\frac {\left (1+3 e^2\right ) \text {Shi}\left (\frac {2}{x-1}\right )}{e}-\frac {1}{4} e x^2 \sinh \left (\frac {2}{x-1}\right )+\frac {x^2 \sinh \left (\frac {2}{x-1}\right )}{4 e}-\frac {1}{4} e x^2 \cosh \left (\frac {2}{x-1}\right )-\frac {x^2 \cosh \left (\frac {2}{x-1}\right )}{4 e}-e x \sinh \left (\frac {2}{x-1}\right )+\frac {5}{4} e \sinh \left (\frac {2}{x-1}\right )-\frac {\sinh \left (\frac {2}{x-1}\right )}{4 e}-e x \cosh \left (\frac {2}{x-1}\right )+\frac {5}{4} e \cosh \left (\frac {2}{x-1}\right )+\frac {\cosh \left (\frac {2}{x-1}\right )}{4 e}+\frac {(x-1) \left (\left (-x+e^2 (x+5)-1\right ) \sinh \left (\frac {2}{x-1}\right )+\left (x+e^2 (x+5)+1\right ) \cosh \left (\frac {2}{x-1}\right )\right )}{4 e}\right )}{x \left (\exp \left (\frac {\left (3 e^2-1\right ) \text {Chi}\left (\frac {2}{x-1}\right )}{e}+\frac {\left (1+3 e^2\right ) \text {Shi}\left (\frac {2}{x-1}\right )}{e}\right )+c_1 \exp \left (\frac {(x-1) \left (\left (-x+e^2 (x+5)-1\right ) \sinh \left (\frac {2}{x-1}\right )+\left (x+e^2 (x+5)+1\right ) \cosh \left (\frac {2}{x-1}\right )\right )}{4 e}\right )\right )}\right \}\right \}\] Maple : cpu = 0.549 (sec), leaf count = 168

dsolve(diff(y(x),x) = y(x)*(-1-cosh((1+x)/(x-1))*x+cosh((1+x)/(x-1))*x^2*y(x)-cosh((1+x)/(x-1))*x^2+cosh((1+x)/(x-1))*x^3*y(x))/x,y(x))
 

\[y \left (x \right ) = \frac {{\mathrm e}^{-\frac {\left (x^{2}-1\right ) {\mathrm e}^{\frac {-1-x}{x -1}}}{4}-\frac {\left (x^{2}+4 x -5\right ) {\mathrm e}^{\frac {1+x}{x -1}}}{4}+\Ei \left (1, \frac {2}{x -1}\right ) {\mathrm e}^{-1}-3 \Ei \left (1, -\frac {2}{x -1}\right ) {\mathrm e}}}{x \left (c_{1}+\int -{\mathrm e}^{\frac {\left (-x^{2}+1\right ) {\mathrm e}^{\frac {-1-x}{x -1}}}{4}+\frac {\left (-x^{2}-4 x +5\right ) {\mathrm e}^{\frac {1+x}{x -1}}}{4}+\Ei \left (1, \frac {2}{x -1}\right ) {\mathrm e}^{-1}-3 \Ei \left (1, -\frac {2}{x -1}\right ) {\mathrm e}} \left (1+x \right ) \cosh \left (\frac {1+x}{x -1}\right )d x \right )}\]