ODE No. 807

\[ y'(x)=-\frac {1}{-e^{y(x)} y(x) \text {$\_$F1}(y(x)-\log (x))-x} \] Mathematica : cpu = 0.274051 (sec), leaf count = 59

DSolve[Derivative[1][y][x] == -(-x - E^y[x]*y[x]*_F1[-Log[x] + y[x]])^(-1),y[x],x]
 

\[\text {Solve}\left [-\int _1^{y(x)-\log (x)}\frac {K[1] \text {$\_$F1}(K[1])+e^{-K[1]}}{\text {$\_$F1}(K[1])}dK[1]-y(x) \log (x)+\frac {\log ^2(x)}{2}=-c_1,y(x)\right ]\] Maple : cpu = 0.467 (sec), leaf count = 43

dsolve(diff(y(x),x) = -1/(-x-_F1(y(x)-ln(x))*y(x)*exp(y(x))),y(x))
 

\[\frac {\ln \left (x \right )^{2}}{2}-y \left (x \right ) \ln \left (x \right )-\left (\int _{}^{y \left (x \right )-\ln \left (x \right )}\frac {\textit {\_F1} \left (\textit {\_a} \right ) \textit {\_a} +{\mathrm e}^{-\textit {\_a}}}{\textit {\_F1} \left (\textit {\_a} \right )}d \textit {\_a} \right )+c_{1} = 0\]