[next] [prev] [prev-tail] [tail] [up]
y′(x)+2tan(x)tan(y(x))−1=0 ✓ Mathematica : cpu = 1.58851 (sec), leaf count = 220
DSolve[-1 + 2*Tan[x]*Tan[y[x]] + Derivative[1][y][x] == 0,y[x],x]
Solve[c1=12(1itan(x)tan2(x)+1−itan2(x)tan(y(x))tan2(x)+1+icot(x))1−(1itan(x)tan2(x)+1−itan2(x)tan(y(x))tan2(x)+1+icot(x))242F1(12,54;32;(icot(x)+1itan(x)tan2(x)+1−itan2(x)tan(y(x))tan2(x)+1)2)+itan(x)−1+(1itan(x)tan2(x)+1−itan2(x)tan(y(x))tan2(x)+1+icot(x))24,y(x)] ✓ Maple : cpu = 1.573 (sec), leaf count = 78
dsolve(diff(y(x),x)+2*tan(y(x))*tan(x)-1 = 0,y(x))
c1+tan(x)((1+tan2(y(x)))(1+tan2(x))(tan(y(x))tan(x)−1)2)14+(tan(y(x))+tan(x))hypergeom([12,54],[32],−(tan(y(x))+tan(x))2(tan(y(x))tan(x)−1)2)2tan(y(x))tan(x)−2=0
[next] [prev] [prev-tail] [front] [up]