ODE No. 810

\[ y'(x)=\frac {x^2 \log ^2(x)+y(x)^2+y(x)-2 x y(x) \log (x)+x}{x} \] Mathematica : cpu = 0.116504 (sec), leaf count = 40

DSolve[Derivative[1][y][x] == (x + x^2*Log[x]^2 + y[x] - 2*x*Log[x]*y[x] + y[x]^2)/x,y[x],x]
 

\[\left \{\left \{y(x)\to -\frac {1}{2} x^2 \left (\frac {1-2 x \log (x)}{x^2}-\frac {1}{x^2}\right )+\frac {1}{-1+\frac {c_1}{x}}\right \}\right \}\] Maple : cpu = 0.064 (sec), leaf count = 16

dsolve(diff(y(x),x) = (x+y(x)+y(x)^2-2*y(x)*ln(x)*x+x^2*ln(x)^2)/x,y(x))
 

\[y \left (x \right ) = \left (\ln \left (x \right )+\frac {1}{c_{1}-x}\right ) x\]