\[ y'(x)=\frac {y(x) (y(x)+1) (y(x)+x)}{x (x y(x)+y(x)+x)} \] ✓ Mathematica : cpu = 11.7745 (sec), leaf count = 386
DSolve[Derivative[1][y][x] == (y[x]*(1 + y[x])*(x + y[x]))/(x*(x + y[x] + x*y[x])),y[x],x]
\[\text {Solve}\left [\frac {2^{2/3} \left (1-\frac {\left (\frac {x^6}{(x+1)^3}\right )^{2/3} (x+1)^2 ((x-2) y(x)+x)}{x^4 ((x+1) y(x)+x)}\right ) \left (\frac {\left (\frac {x^6}{(x+1)^3}\right )^{2/3} (x+1)^2 ((x-2) y(x)+x)}{x^4 ((x+1) y(x)+x)}+2\right ) \left (\left (1-\frac {\left (\frac {x^6}{(x+1)^3}\right )^{2/3} (x+1)^2 ((x-2) y(x)+x)}{x^4 ((x+1) y(x)+x)}\right ) \log \left (2^{2/3} \left (1-\frac {\left (\frac {x^6}{(x+1)^3}\right )^{2/3} (x+1)^2 ((x-2) y(x)+x)}{x^4 ((x+1) y(x)+x)}\right )\right )+\left (\frac {\left (\frac {x^6}{(x+1)^3}\right )^{2/3} (x+1)^2 ((x-2) y(x)+x)}{x^4 ((x+1) y(x)+x)}-1\right ) \log \left (2^{2/3} \left (\frac {\left (\frac {x^6}{(x+1)^3}\right )^{2/3} (x+1)^2 ((x-2) y(x)+x)}{x^4 ((x+1) y(x)+x)}+2\right )\right )-3\right )}{9 \left (\frac {3 \left (\frac {x^6}{(x+1)^3}\right )^{2/3} (x+1)^2 ((x-2) y(x)+x)}{x^4 ((x+1) y(x)+x)}-\frac {((x-2) y(x)+x)^3}{((x+1) y(x)+x)^3}-2\right )}=\frac {2^{2/3} \left (\frac {x^6}{(x+1)^3}\right )^{2/3} (x+1)^2}{9 x^3}+c_1,y(x)\right ]\] ✓ Maple : cpu = 0.212 (sec), leaf count = 97
dsolve(diff(y(x),x) = y(x)*(y(x)+x)*(1+y(x))/x/(x*y(x)+x+y(x)),y(x))
\[y \left (x \right ) = -\frac {{\mathrm e}^{\RootOf \left (-\ln \left (\frac {{\mathrm e}^{\textit {\_Z}}}{2}+\frac {9}{2}\right ) {\mathrm e}^{\textit {\_Z}}+3 \,{\mathrm e}^{\textit {\_Z}} c_{1}+\textit {\_Z} \,{\mathrm e}^{\textit {\_Z}}+{\mathrm e}^{\textit {\_Z}} x +9\right )} x}{{\mathrm e}^{\RootOf \left (-\ln \left (\frac {{\mathrm e}^{\textit {\_Z}}}{2}+\frac {9}{2}\right ) {\mathrm e}^{\textit {\_Z}}+3 \,{\mathrm e}^{\textit {\_Z}} c_{1}+\textit {\_Z} \,{\mathrm e}^{\textit {\_Z}}+{\mathrm e}^{\textit {\_Z}} x +9\right )} x +{\mathrm e}^{\RootOf \left (-\ln \left (\frac {{\mathrm e}^{\textit {\_Z}}}{2}+\frac {9}{2}\right ) {\mathrm e}^{\textit {\_Z}}+3 \,{\mathrm e}^{\textit {\_Z}} c_{1}+\textit {\_Z} \,{\mathrm e}^{\textit {\_Z}}+{\mathrm e}^{\textit {\_Z}} x +9\right )}+9}\]