ODE No. 859

\[ y'(x)=\frac {\text {$\_$F1}\left (y(x)^2-2 x\right )+x}{x \sqrt {y(x)^2}} \] Mathematica : cpu = 0.75609 (sec), leaf count = 105

DSolve[Derivative[1][y][x] == (x + _F1[-2*x + y[x]^2])/(x*Sqrt[y[x]^2]),y[x],x]
 

\[\text {Solve}\left [\int _1^{y(x)}\left (\frac {\sqrt {K[2]^2}}{\text {$\_$F1}\left (K[2]^2-2 x\right )}-\int _1^x\frac {2 K[2] \text {$\_$F1}'\left (K[2]^2-2 K[1]\right )}{\left (\text {$\_$F1}\left (K[2]^2-2 K[1]\right )\right ){}^2}dK[1]\right )dK[2]+\int _1^x\left (-\frac {1}{\text {$\_$F1}\left (y(x)^2-2 K[1]\right )}-\frac {1}{K[1]}\right )dK[1]=c_1,y(x)\right ]\] Maple : cpu = 0.259 (sec), leaf count = 63

dsolve(diff(y(x),x) = -(-x-_F1(y(x)^2-2*x))/(y(x)^2)^(1/2)/x,y(x))
 

\[y \left (x \right ) = \sqrt {2 \RootOf \left (\ln \left (x \right )-\left (\int _{}^{\textit {\_Z}}\frac {1}{\textit {\_F1} \left (2 \textit {\_a} \right )}d \textit {\_a} \right )+2 c_{1}\right )+2 x}\]