ODE No. 885

\[ y'(x)=-\frac {i \left (x^6+12 x^4 y(x)^2+4 x^4+48 x^2 y(x)^4+32 x^2 y(x)^2+64 y(x)^6+64 y(x)^4+32 i x+64\right )}{128 y(x)} \] Mathematica : cpu = 40.64 (sec), leaf count = 0

DSolve[Derivative[1][y][x] == ((-1/128*I)*(64 + (32*I)*x + 4*x^4 + x^6 + 32*x^2*y[x]^2 + 12*x^4*y[x]^2 + 64*y[x]^4 + 48*x^2*y[x]^4 + 64*y[x]^6))/y[x],y[x],x]
 

, could not solve

DSolve[Derivative[1][y][x] == ((-1/128*I)*(64 + (32*I)*x + 4*x^4 + x^6 + 32*x^2*y[x]^2 + 12*x^4*y[x]^2 + 64*y[x]^4 + 48*x^2*y[x]^4 + 64*y[x]^6))/y[x], y[x], x]

Maple : cpu = 0. (sec), leaf count = 0

dsolve(diff(y(x),x) = -1/128*I*(32*I*x+64+64*y(x)^4+32*x^2*y(x)^2+4*x^4+64*y(x)^6+48*x^2*y(x)^4+12*x^4*y(x)^2+x^6)/y(x),y(x))
 

, could not solve

dsolve(diff(y(x),x) = -1/128*I*(32*I*x+64+64*y(x)^4+32*x^2*y(x)^2+4*x^4+64*y(x)^6+48*x^2*y(x)^4+12*x^4*y(x)^2+x^6)/y(x),y(x))