ODE No. 891

\[ y'(x)=\frac {y(x)^2 \left (x^4 y(x)+2 x^2 y(x)+2 x^2-2 y(x)\right )}{x^3 \left (x^2 y(x)+x^2-y(x)\right )} \] Mathematica : cpu = 0.188438 (sec), leaf count = 135

DSolve[Derivative[1][y][x] == (y[x]^2*(2*x^2 - 2*y[x] + 2*x^2*y[x] + x^4*y[x]))/(x^3*(x^2 - y[x] + x^2*y[x])),y[x],x]
 

\[\left \{\left \{y(x)\to \frac {x^5}{-x^3 \left (x^2-1\right )+\frac {\sqrt {\left (x^2-1\right )^2 x+x^5 \left (-2 \left (\frac {1}{2 x^4}-\frac {1}{x^2}+\log (x)\right )+c_1\right )}}{\sqrt {\frac {1}{x^5}}}}\right \},\left \{y(x)\to -\frac {x^5}{\left (x^2-1\right ) x^3+\frac {\sqrt {\left (x^2-1\right )^2 x+x^5 \left (-2 \left (\frac {1}{2 x^4}-\frac {1}{x^2}+\log (x)\right )+c_1\right )}}{\sqrt {\frac {1}{x^5}}}}\right \}\right \}\] Maple : cpu = 0.056 (sec), leaf count = 56

dsolve(diff(y(x),x) = y(x)^2/x^3*(-2*y(x)+2*x^2+2*x^2*y(x)+y(x)*x^4)/(x^2-y(x)+x^2*y(x)),y(x))
 

\[y \left (x \right ) = \frac {x^{2}}{\sqrt {c_{1}-2 \ln \left (x \right )}\, x^{2}-x^{2}+1}\]