\[ y'(x)=\frac {\sqrt {x} \left (-108 x^{3/2} y(x)+18 x^{9/2}-108 x^{3/2}+x^9-18 x^6 y(x)+108 x^3 y(x)^2-216 y(x)^3\right )}{36 x^3-216 y(x)-216} \] ✓ Mathematica : cpu = 0.214607 (sec), leaf count = 79
DSolve[Derivative[1][y][x] == (Sqrt[x]*(-108*x^(3/2) + 18*x^(9/2) + x^9 - 108*x^(3/2)*y[x] - 18*x^6*y[x] + 108*x^3*y[x]^2 - 216*y[x]^3))/(-216 + 36*x^3 - 216*y[x]),y[x],x]
\[\left \{\left \{y(x)\to \frac {1}{6} \left (x^3-6\right )-\frac {1}{216 \left (-\frac {1}{216}-\frac {1}{\sqrt {-62208 x^{3/2}+c_1}}\right )}\right \},\left \{y(x)\to \frac {1}{6} \left (x^3-6\right )-\frac {1}{216 \left (-\frac {1}{216}+\frac {1}{\sqrt {-62208 x^{3/2}+c_1}}\right )}\right \}\right \}\] ✓ Maple : cpu = 0.081 (sec), leaf count = 87
dsolve(diff(y(x),x) = (-108*x^(3/2)*y(x)+18*x^(9/2)-108*x^(3/2)-216*y(x)^3+108*x^3*y(x)^2-18*y(x)*x^6+x^9)*x^(1/2)/(-216*y(x)+36*x^3-216),y(x))
\[y \left (x \right ) = \frac {\sqrt {9 c_{1}-12 x^{\frac {3}{2}}}\, x^{3}-3 x^{3}+18}{6 \sqrt {9 c_{1}-12 x^{\frac {3}{2}}}-18}\]