ODE No. 899

\[ y'(x)=\frac {x^6 y(x)^3+x^6 y(x)^2+x^6+\frac {x^5}{2}+\frac {3}{4} x^4 y(x)^2+\frac {1}{2} x^4 y(x)+\frac {3}{16} x^2 y(x)+\frac {x^2}{16}+\frac {1}{64}}{x^8} \] Mathematica : cpu = 0.213944 (sec), leaf count = 106

DSolve[Derivative[1][y][x] == (1/64 + x^2/16 + x^5/2 + x^6 + (3*x^2*y[x])/16 + (x^4*y[x])/2 + (3*x^4*y[x]^2)/4 + x^6*y[x]^2 + x^6*y[x]^3)/x^8,y[x],x]
 

\[\text {Solve}\left [-\frac {29}{3} \text {RootSum}\left [-29 \text {$\#$1}^3+3 \sqrt [3]{29} \text {$\#$1}-29\& ,\frac {\log \left (\frac {\frac {3 y(x)}{x^2}+\frac {4 x^2+3}{4 x^4}}{\sqrt [3]{29} \sqrt [3]{\frac {1}{x^6}}}-\text {$\#$1}\right )}{\sqrt [3]{29}-29 \text {$\#$1}^2}\& \right ]=-\frac {1}{9} 29^{2/3} \left (\frac {1}{x^6}\right )^{2/3} x^3+c_1,y(x)\right ]\] Maple : cpu = 0.029 (sec), leaf count = 47

dsolve(diff(y(x),x) = 1/64*(32*x^5+64*x^6+64*x^6*y(x)^2+32*y(x)*x^4+4*x^2+64*x^6*y(x)^3+48*x^4*y(x)^2+12*x^2*y(x)+1)/x^8,y(x))
 

\[y \left (x \right ) = \frac {116 \RootOf \left (-81 \left (\int _{}^{\textit {\_Z}}\frac {1}{841 \textit {\_a}^{3}-27 \textit {\_a} +27}d \textit {\_a} \right ) x +3 x c_{1}-1\right ) x^{2}-12 x^{2}-9}{36 x^{2}}\]