\[ y'(x)=\frac {\sin \left (\frac {y(x)}{x}\right ) \csc \left (\frac {y(x)}{2 x}\right ) \sec \left (\frac {y(x)}{2 x}\right ) \left (2 x^2 \sin \left (\frac {y(x)}{2 x}\right ) \cos \left (\frac {y(x)}{2 x}\right )+y(x)\right )}{2 x} \] ✓ Mathematica : cpu = 0.123305 (sec), leaf count = 19
DSolve[Derivative[1][y][x] == (Csc[y[x]/(2*x)]*Sec[y[x]/(2*x)]*Sin[y[x]/x]*(2*x^2*Cos[y[x]/(2*x)]*Sin[y[x]/(2*x)] + y[x]))/(2*x),y[x],x]
\[\left \{\left \{y(x)\to 2 x \cot ^{-1}\left (e^{-x-c_1}\right )\right \}\right \}\] ✓ Maple : cpu = 0.114 (sec), leaf count = 48
dsolve(diff(y(x),x) = 1/2*sin(y(x)/x)*(y(x)+2*x^2*sin(1/2*y(x)/x)*cos(1/2*y(x)/x))/sin(1/2*y(x)/x)/x/cos(1/2*y(x)/x),y(x))
\[y \left (x \right ) = \arctan \left (\frac {2 c_{1} {\mathrm e}^{x}}{c_{1}^{2} {\mathrm e}^{2 x}+1}, \frac {-c_{1}^{2} {\mathrm e}^{2 x}+1}{c_{1}^{2} {\mathrm e}^{2 x}+1}\right ) x\]