ODE No. 907

\[ y'(x)=\frac {\frac {3 x^2}{2}+x^2 \sin (x)-2 x^2 \cos (x)+\frac {1}{2} x^2 \cos (2 x)-2 x y(x)+y(x)^2+2 x y(x) \cos (x)+x-x \cos (x)}{x} \] Mathematica : cpu = 0.249218 (sec), leaf count = 22

DSolve[Derivative[1][y][x] == (x + (3*x^2)/2 - x*Cos[x] - 2*x^2*Cos[x] + (x^2*Cos[2*x])/2 + x^2*Sin[x] - 2*x*y[x] + 2*x*Cos[x]*y[x] + y[x]^2)/x,y[x],x]
 

\[\left \{\left \{y(x)\to -x (\cos (x)-1)+\frac {1}{-\log (x)+c_1}\right \}\right \}\] Maple : cpu = 0.174 (sec), leaf count = 20

dsolve(diff(y(x),x) = 1/2*(-2*cos(x)*x+2*x^2*sin(x)+2*x+2*y(x)^2+4*y(x)*cos(x)*x-4*x*y(x)+x^2*cos(2*x)+3*x^2-4*x^2*cos(x))/x,y(x))
 

\[y \left (x \right ) = -\left (-1+\cos \left (x \right )\right ) x +\frac {1}{c_{1}-\ln \left (x \right )}\]