ODE No. 909

\[ y'(x)=\frac {x^3 y(x)^6+x^3 y(x)^4+x^3+3 x^2 y(x)^4+2 x^2 y(x)^2+3 x y(x)^2+x+1}{x^5 y(x)} \] Mathematica : cpu = 0.146759 (sec), leaf count = 64

DSolve[Derivative[1][y][x] == (1 + x + x^3 + 3*x*y[x]^2 + 2*x^2*y[x]^2 + 3*x^2*y[x]^4 + x^3*y[x]^4 + x^3*y[x]^6)/(x^5*y[x]),y[x],x]
 

\[\text {Solve}\left [\frac {1}{2} \text {RootSum}\left [2 \text {$\#$1}^3+2 \text {$\#$1}^2+1\& ,\frac {\log \left (\frac {x y(x)^2+1}{x}-\text {$\#$1}\right )}{3 \text {$\#$1}^2+2 \text {$\#$1}}\& \right ]+\frac {1}{x}+c_1=0,y(x)\right ]\] Maple : cpu = 1.779 (sec), leaf count = 84

dsolve(diff(y(x),x) = (x^3+y(x)^4*x^3+2*x^2*y(x)^2+x+x^3*y(x)^6+3*x^2*y(x)^4+3*x*y(x)^2+1)/x^5/y(x),y(x))
 

\[y \left (x \right ) = \frac {\sqrt {x \left (\RootOf \left (\left (\int _{}^{\textit {\_Z}}\frac {1}{2 \textit {\_a}^{3}+2 \textit {\_a}^{2}+1}d \textit {\_a} \right ) x +c_{1} x +1\right ) x -1\right )}}{x}\]